Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation.

نویسندگان

  • Andrea Balbo
  • Kenneth H Minor
  • Carlos A Velikovsky
  • Roy A Mariuzza
  • Cynthia B Peterson
  • Peter Schuck
چکیده

Protein interactions can promote the reversible assembly of multiprotein complexes, which have been identified as critical elements in many regulatory processes in cells. The biophysical characterization of assembly products, their number and stoichiometry, and the dynamics of their interactions in solution can be very difficult. A classical first-principle approach for the study of purified proteins and their interactions is sedimentation velocity analytical ultracentrifugation. This approach allows one to distinguish different protein complexes based on their migration in the centrifugal field without isolating reversibly formed complexes from the individual components. An important existing limitation for systems with multiple components and assembly products is the identification of the species associated with the observed sedimentation rates. We developed a computational approach for integrating multiple optical signals into the sedimentation coefficient distribution analysis of components, which combines the size-dependent hydrodynamic separation with discrimination of the extinction properties of the sedimenting species. This approach allows one to deduce the stoichiometry and to assign the identity of the assembly products without prior assumptions of the number of species and the nature of their interaction. Although chromophoric labels may be used to enhance the spectral resolution, we demonstrate the ability to work label-free for three-component protein mixtures. We observed that the spectral discrimination can synergistically enhance the hydrodynamic resolution. This method can take advantage of differences in the absorbance spectra of interacting solution components, for example, for the study of protein-protein, protein-nucleic acid or protein-small molecule interactions, and can determine the size, hydrodynamic shape, and stoichiometry of multiple complexes in solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation

Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Title Studying multiprotein complexes by multisignal sedimentation velocity analytical ultracentrifugation. Publication Type Journal Article Year of Publication 2005 Authors Balbo, A, Minor, KH, Velikovsky, CA, Mariuzza, RA, Peterson, CB, Schuck, P Journal Proc Natl Acad Sci U S A Volume 102 Is...

متن کامل

Determination of protein complex stoichiometry through multisignal sedimentation velocity experiments.

Determination of the stoichiometry of macromolecular assemblies is fundamental to an understanding of how they function. Many different biophysical methodologies may be used to determine stoichiometry. In the past, both sedimentation equilibrium and sedimentation velocity analytical ultracentrifugation have been employed to determine component stoichiometries. Recently, a method of globally ana...

متن کامل

Sedimentation of rapidly interacting multicomponent systems

The biophysical analysis of dynamically formed multi-protein complexes in solution presents a formidable technical challenge. Sedimentation velocity (SV) analytical ultracentrifugation achieves strongly size-dependent hydrodynamic resolution of different size species, and can be combined with multi-component detection by exploiting different spectral properties or temporally modulated signals f...

متن کامل

Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation.

This unit introduces the basic principles and practice of sedimentation velocity analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, multi-protein complexes, binding stoichiometry, and the determination of association constants. The analytical tools described include sedimentation coefficie...

متن کامل

Analysis of Protein Interactions with Picomolar Binding Affinity by Fluorescence-Detected Sedimentation Velocity

The study of high-affinity protein interactions with equilibrium dissociation constants (KD) in the picomolar range is of significant interest in many fields, but the characterization of stoichiometry and free energy of such high-affinity binding can be far from trivial. Analytical ultracentrifugation has long been considered a gold standard in the study of protein interactions but is typically...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 1  شماره 

صفحات  -

تاریخ انتشار 2005